Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Biomol Ther (Seoul) ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602043

RESUMO

Oxidative stress contributes to the onset of chronic diseases in various organs, including muscles. Morroniside, a type of iridoid glycoside contained in Cornus officinalis, is reported to have advantages as a natural compound that prevents various diseases. However, the question of whether this phytochemical exerts any inhibitory effect against oxidative stress in muscle cells has not been well reported. Therefore, the current study aimed to evaluate whether morroniside can protect against oxidative damage induced by hydrogen peroxide (H2O2) in murine C2C12 myoblasts. Our results demonstrate that morroniside pretreatment was able to inhibit cytotoxicity while suppressing H2O2-induced DNA damage and apoptosis. Morroniside also significantly improved the antioxidant capacity in H2O2-challenged C2C12 cells by blocking the production of cellular reactive oxygen species and mitochondrial superoxide and increasing glutathione production. In addition, H2O2-induced mitochondrial damage and endoplasmic reticulum (ER) stress were effectively attenuated by morroniside pretreatment, inhibiting cytoplasmic leakage of cytochrome c and expression of ER stress-related proteins. Furthermore, morroniside neutralized H2O2-mediated calcium (Ca2+) overload in mitochondria and mitigated the expression of calpains, cytosolic Ca2+-dependent proteases. Collectively, these findings demonstrate that morroniside protected against mitochondrial impairment and Ca2+-mediated ER stress by minimizing oxidative stress, thereby inhibiting H2O2-induced cytotoxicity in C2C12 myoblasts.

2.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612609

RESUMO

Approximately 75% of bladder cancer cases originate as non-muscle-invasive bladder cancer (NMIBC). Despite initial diagnosis, NMIBC commonly recurs, with up to 45% advancing to muscle-invasive bladder cancer (MIBC) and metastatic disease. Treatment for high-risk NMIBC typically includes procedures like transurethral resection and, depending on recurrence risk, intravesical chemotherapy or immunotherapy such as Bacillus Calmette-Guérin (BCG). However, persistent shortages of BCG necessitate alternative first-line treatments. We aim to use a multi-gene signature in high-risk NMIBC patients to determine whether patients may benefit from immune checkpoint inhibitors (ICIs) as an alternative to BCG and to evaluate their clinical utility. The multi-gene signature obtained from the three independent NMIBC cohorts was applied to stratify the UROMOL2016 cohort (n = 476) using consensus clustering. Each subtype was distinguished by biological pathway analysis. Validation analysis using a machine learning algorithm was performed in six independent cohorts including the BRS (n = 283) cohort treated with BCG and the IMvigor210 (n = 298) clinical trials treated with PD-L1 inhibitors. Based on consensus cluster analysis, NMIBC patients in the UROMOL2016 cohort were classified into three classes exhibiting distinguished characteristics, including DNA damage repair (DDR). Survival analysis showed that the NMIBC-DDR class had the highest rates of disease progression (progression-free survival, p = 0.002 by log-rank test) in the UROMOL cohort and benefited from BCG and ICIs (respectively, p = 0.02 and p = 0.03 by log-rank test). This study suggests that the multi-gene signature may have a role in identifying high-risk NMIBC patients and improving the responsiveness of ICIs. Additionally, we propose immunotherapy as a new first-line treatment for patients with high-risk NMIBC because of the shortage of BCG supply. It is important to help more patients prioritize cancer immunotherapy.


Assuntos
Mycobacterium bovis , Neoplasias não Músculo Invasivas da Bexiga , Neoplasias da Bexiga Urinária , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Vacina BCG/uso terapêutico , Imunoterapia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapia , Mycobacterium bovis/genética
3.
J Hazard Mater ; 464: 132966, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-37976851

RESUMO

Exposure to ambient ultrafine particulate matter (UPM) causes respiratory disorders; however, the underlying molecular mechanisms remain unclear. In this study, we synthesized simulated UPM (sUPM) with controlled physicochemical properties using the spark-discharge method. Subsequently, we investigated the biological effects of sUPM using BEAS-2B human bronchial epithelial cells (HBECs) and a mouse intratracheal instillation model. High throughput RNA-sequencing and bioinformatics analyses revealed that dysregulation of the glycolytic metabolism is involved in the inhibited proliferation and survival of HBECs by sUPM treatment. Furthermore, signaling pathway and enzymatic analyses showed that the treatment of BEAS-2B cells with sUPM induces the inactivation of extracellular signal-regulated kinase (ERK) and protein kinase B (PKB, also known as AKT), resulting in the downregulation of phosphofructokinase 2 (PFK2) S483 phosphorylation, PFK enzyme activity, and aerobic glycolysis in HBECs in an oxidative stress-independent manner. Additionally, intratracheal instillation of sUPM reduced the phosphorylation of ERK, AKT, and PFK2, decreased proliferation, and increased the apoptosis of bronchial epithelial cells in mice. The findings of this study imply that UPM induces pulmonary toxicity by disrupting aerobic glycolytic metabolism in lung epithelial cells, which can provide novel insights into the toxicity mechanisms of UPM and strategies to prevent their toxic effects.


Assuntos
Poluentes Atmosféricos , Material Particulado , Humanos , Animais , Camundongos , Material Particulado/análise , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosforilação , Células Epiteliais , Glicólise , Fosfofrutoquinases/análise , Fosfofrutoquinases/metabolismo , Poluentes Atmosféricos/análise
4.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37958549

RESUMO

Human endogenous retrovirus (HERV)-K was reportedly inserted into the human genome millions of years ago and is closely related to various diseases, including cancer and immune regulation. In our previous studies, CRISPR-Cas9-enabled knockout (KO) of the HERV-K env gene was found to potentially reduce cell proliferation, cell migration, and invasion in colorectal and ovarian cancer cell lines. The immune response involves the migration and invasion of cells and is similar to cancer; however, in certain ways, it is completely unlike cancer. Therefore, we induced HERV-K119 env gene KO in THP-1, a monocytic cell that can be differentiated into a macrophage, to investigate the role of HERV-K119 env in immune regulation. Cell migration and invasion were noted to be significantly increased in HERV-K119 env KO THP-1 cells than in MOCK, and these results were contrary to those of cancer cells. To identify the underlying mechanism of HERV-K119 env KO in THP-1 cells, transcriptome analysis and cytokine array analysis were conducted. Semaphorin7A (SEMA7A), which induces the production of cytokines in macrophages and monocytic cells and plays an important role in immune effector cell activation during an inflammatory immune response, was significantly increased in HERV-K119 env KO THP-1 cells. We also found that HERV-K119 env KO THP-1 cells expressed various macrophage-specific surface markers, suggesting that KO of HERV-K119 env triggers the differentiation of THP-1 cells from monocytic cells into macrophages. In addition, analysis of the expression of M1 and M2 macrophage markers showed that M1 macrophage marker cluster of differentiation 32 (CD32) was significantly increased in HERV-K119 env KO cells. These results suggest that HERV-K119 env is implicated in the differentiation of monocytic cells into M1 macrophages and plays important roles in the immune response.


Assuntos
Retrovirus Endógenos , Feminino , Humanos , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Células THP-1 , Genes env , Linfócitos/metabolismo , Diferenciação Celular , Produtos do Gene env/genética , Produtos do Gene env/metabolismo
5.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37445726

RESUMO

Diabetic retinopathy (DR) is the leading cause of vision loss and a critical complication of diabetes with a very complex etiology. The build-up of reactive oxygen species (ROS) due to hyperglycemia is recognized as a primary risk factor for DR. Although spermidine, a naturally occurring polyamine, has been reported to have antioxidant effects, its effectiveness in DR has not yet been examined. Therefore, in this study, we investigated whether spermidine could inhibit high glucose (HG)-promoted oxidative stress in human retinal pigment epithelial (RPE) cells. The results demonstrated that spermidine notably attenuated cytotoxicity and apoptosis in HG-treated RPE ARPE-19 cells, which was related to the inhibition of mitochondrial ROS production. Under HG conditions, interleukin (IL)-1ß and IL-18's release levels were markedly increased, coupled with nuclear factor kappa B (NF-κB) signaling activation. However, spermidine counteracted the HG-induced effects. Moreover, the expression of nucleotide-binding oligomerization domain-like receptor (NLR) protein 3 (NLRP3) inflammasome multiprotein complex molecules, including TXNIP, NLRP3, ASC, and caspase-1, increased in hyperglycemic ARPE-19 cells, but spermidine reversed these molecular changes. Collectively, our findings demonstrate that spermidine can protect RPE cells from HG-caused injury by reducing ROS and NF-κB/NLRP3 inflammasome pathway activation, indicating that spermidine could be a potential therapeutic compound for DR treatment.


Assuntos
Retinopatia Diabética , Inflamassomos , Humanos , Inflamassomos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Espermidina/farmacologia , Estresse Oxidativo , Glucose/toxicidade , Células Epiteliais/metabolismo , Pigmentos da Retina/metabolismo
6.
Genes (Basel) ; 14(7)2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37510314

RESUMO

Although most human endogenous retroviruses (HERVs) have been silenced and lost their ability to translocate because of accumulated mutations during evolution, they still play important roles in human biology. Several studies have demonstrated that HERVs play pathological roles in numerous human diseases, especially cancer. A few studies have revealed that long non-coding RNAs that are transcribed from HERV sequences affect cancer progression. However, there is no study on microRNAs derived from HERVs related to cancer. In this study, we identified 29 microRNAs (miRNAs) derived from HERV sequences in the human genome. In particular, we discovered that miR-4454, which is HERV-H-derived miRNA, was upregulated in non-muscle-invasive bladder cancer (NMIBC) cells. To figure out the effects of upregulated miR-4454 in NMIBC, genes whose expression was downregulated in NMIBC, as well as tumor suppressor genes, were selected as putative target genes of miR-4454. The dual-luciferase assay was used to determine the negative relationship between miR-4454 and its target genes, DNAJB4 and SASH1, and they were confirmed to be promising target genes of miR-4454. Taken together, this study suggests that the upregulation of miR-4454 derived from HERV-H in NMIBC reduces the expression of the tumor suppressor genes, DNAJB4 and SASH1, to promote NMIBC progression.


Assuntos
Retrovirus Endógenos , MicroRNAs , Neoplasias não Músculo Invasivas da Bexiga , Neoplasias da Bexiga Urinária , Humanos , Retrovirus Endógenos/genética , Genoma Humano , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , MicroRNAs/genética , Proteínas Supressoras de Tumor/genética , Neoplasias da Bexiga Urinária/genética
7.
Genes Genomics ; 45(7): 887-899, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37133721

RESUMO

BACKGROUND: The variable number of tandem repeat (VNTR) analyses are methods based on the detection of repeated sequences within the human genome. In order to perform DNA typing at the personal laboratory, it is necessary to improve the VNTR analysis. OBJECTIVE: The VNTR markers were difficult to popularize because PCR amplification was difficult due to its GC-rich and long nucleotide sequence. The aim of this study was to select the multiple VNTR markers that could only be identified by PCR amplification and electrophoresis. METHODS: We genotyped each of the 15 VNTR markers using genomic DNA from 260 unrelated individuals by PCR amplification. Differences in the fragment length of PCR products are visualized by agarose gel electrophoresis. To confirm their usefulness as a DNA fingerprint these 15 markers were simultaneously analyzed with the DNA of 213 individuals and verified the statistical significance. In addition, to investigate the usefulness of each of the 15 VNTR markers as paternity markers, Mendelian segregation by meiotic division within a family consisting of two or three generations was confirmed. RESULTS: Fifteen VNTR loci selected in this study could be easily amplified by PCR and analyzed by electrophoresis, and were newly named DTM1 ~ 15. The number of total alleles in each VNTR showed from 4 to 16, and 100 to 1600 bp in length, and their heterozygosity ranged from 0.2341 to 0.7915. In simultaneous analysis of 15 markers from 213 DNAs, the probability of chance appearing the same genotype in different individuals was less than 4.09E-12, indicating its usefulness as a DNA fingerprint. These loci were transmitted through meiosis by Mendelian inheritance in families. CONCLUSION: Fifteen VNTR markers have been found to be useful as DNA fingerprints for personal identification and kinship analysis that can be used at the personal laboratory level.


Assuntos
Impressões Digitais de DNA , Repetições Minissatélites , Humanos , Impressões Digitais de DNA/métodos , Repetições Minissatélites/genética , Reação em Cadeia da Polimerase , Paternidade , DNA
8.
Genes (Basel) ; 15(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38254939

RESUMO

CLPTM1L (Cleft Lip and Palate Transmembrane Protein 1-Like) has previously been implicated in tumorigenesis and drug resistance in cancer. However, the genetic link between CLPTM1L and bladder cancer remains uncertain. In this study, we investigated the genetic association of variable number of tandem repeats (VNTR; minisatellites, MS) regions within CLPTM1L with bladder cancer. We identified four CLPTM1L-MS regions (MS1~MS4) located in intron regions. To evaluate the VNTR polymorphic alleles, we analyzed 441 cancer-free controls and 181 bladder cancer patients. Our analysis revealed a higher frequency of specific repeat sizes within the MS2 region in bladder cancer cases compared to controls. Notably, 25 and 27 repeats were exclusively present in the bladder cancer group. Moreover, rare alleles within the medium-length repeat range (25-29 repeats) were associated with an elevated bladder cancer risk (odds ratio [OR] = 5.78, 95% confidence interval [CI]: 1.49-22.47, p = 0.004). We confirmed that all MS regions followed Mendelian inheritance, and demonstrated that MS2 alleles increased CLPTM1L promoter activity in the UM-UC3 bladder cancer cells through a luciferase assay. Our findings propose the utility of CLPTM1L-MS regions as DNA typing markers, particularly highlighting the potential of middle-length rare alleles within CLPTM1L-MS2 as predictive markers for bladder cancer risk.


Assuntos
Neoplasias da Bexiga Urinária , Humanos , Alelos , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Bexiga Urinária , Neoplasias da Bexiga Urinária/genética
9.
Front Bioeng Biotechnol ; 11: 1302983, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38268938

RESUMO

Bladder cancer is the most common urological malignancy worldwide, and its high recurrence rate leads to poor survival outcomes. The effect of anticancer drug treatment varies significantly depending on individual patients and the extent of drug resistance. In this study, we developed a validation system based on an organ-on-a-chip integrated with artificial intelligence technologies to predict resistance to anticancer drugs in bladder cancer. As a proof-of-concept, we utilized the gemcitabine-resistant bladder cancer cell line T24 with four distinct levels of drug resistance (parental, early, intermediate, and late). These cells were co-cultured with endothelial cells in a 3D microfluidic chip. A dataset comprising 2,674 cell images from the chips was analyzed using a convolutional neural network (CNN) to distinguish the extent of drug resistance among the four cell groups. The CNN achieved 95.2% accuracy upon employing data augmentation and a step decay learning rate with an initial value of 0.001. The average diagnostic sensitivity and specificity were 90.5% and 96.8%, respectively, and all area under the curve (AUC) values were over 0.988. Our proposed method demonstrated excellent performance in accurately identifying the extent of drug resistance, which can assist in the prediction of drug responses and in determining the appropriate treatment for bladder cancer patients.

10.
Cell Death Discov ; 8(1): 450, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344487

RESUMO

Chemotherapy resistance is an obstacle to cancer therapy and is considered a major cause of recurrence. Thus, understanding the mechanisms of chemoresistance is critical to improving the prognosis of patients. Here, we have established a stepwise gemcitabine-resistant T24 bladder cancer cell line to understand the molecular mechanisms of chemoresistance within cancer cells. The characteristics of the stepwise chemoresistance cell line were divided into 4 phases (parental, early, intermediate, and late phases). These four phase cells showed increasingly aggressive phenotypes in vitro and in vivo experiments with increasing phases and revealed the molecular properties of the biological process from parent cells to phased gemcitabine-resistant cell line (GRC). Taken together, through the analysis of gene expression profile data, we have characterized gene set of each phase indicating the response to anticancer drug treatment. Specifically, we identified a multigene signature (23 genes including GATA3, APOBEC3G, NT5E, MYC, STC1, FOXD1, SMAD9) and developed a chemoresistance score consisting of that could predict eventual responsiveness to gemcitabine treatment. Our data will contribute to predicting chemoresistance and improving the prognosis of bladder cancer patients.

11.
Int J Mol Sci ; 23(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36076991

RESUMO

Contrary to many reports that antiplatelet agents inhibit cancer growth and metastasis, new solid tumors have been reported in patients receiving long-term antiplatelet therapy. We investigated the effects of these agents directly on cancer cells in the absence of platelets to mimic the effects of long-term therapy. When four antiplatelet agents (aspirin, clopidogrel, prasugrel, and ticagrelor) were administered to colon cancer cells, cancer cell proliferation was inhibited similarly to a previous study. However, surprisingly, when cells were treated with a purinergic P2Y12 inhibitor (purinergic antiplatelet agent), the motility of the cancer cells was significantly increased. Therefore, gene expression profiles were identified to investigate the effect of P2Y12 inhibitors on cell mobility, and Serpin family 1 (SERPINE1) was identified as a common gene associated with cell migration and cell death in three groups. Antiplatelet treatment increased the level of SERPINE1 in cancer cells and also promoted the secretion of SERPINE1 into the medium. Increased SERPINE1 was found to induce MMP1 and, thus, increase cell motility. In addition, an increase in SERPINE1 was confirmed using the serum of patients who received these antiplatelet drugs. With these results, we propose that SERPINE1 could be used as a new target gene to prevent the onset and metastasis of cancer in patients with long-term antiplatelet therapy.


Assuntos
Neoplasias do Colo , Inibidores da Agregação Plaquetária , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Humanos , Metaloproteinase 1 da Matriz , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/uso terapêutico , Antagonistas do Receptor Purinérgico P2Y/uso terapêutico , Ticlopidina
12.
Gen Physiol Biophys ; 41(4): 263-274, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35938960

RESUMO

Platycodin D (PD) is a triterpenoid saponin, a major bioactive constituent of the roots of Platycodon grandiflorum, which is well known for possessing various pharmacological properties. However, the anti-cancer mechanism of PD in bladder cancer cells remains poorly understood. In the current study, we investigated the effect of PD on the growth of human bladder urothelial carcinoma cells. PD treatment significantly reduced the cell survival of bladder cancer cells associated with induction of apoptosis and DNA damage. PD inhibited the expression of inhibitor of apoptosis family members, activated caspases, and induced cleavage of poly (ADP-ribose) polymerase. PD also increased the release of cytochrome c into the cytoplasm by disrupting the mitochondrial membrane potential while upregulating the expression ratio of Bax to Bcl-2. The PD-mediated anti-proliferative effect was significantly inhibited by pre-treatment with a pancaspase inhibitor, but not by an inhibitor of necroptosis. Moreover, PD suppressed the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway, and the apoptosis-inducing effect of PD was further enhanced by a PI3K inhibitor. In addition, PD increased the accumulation of reactive oxygen species (ROS), whereas N-acetyl cysteine (NAC), an ROS inhibitor, significantly attenuated the growth inhibition and inactivation of the PI3K/Akt/mTOR signaling caused by PD. Furthermore, NAC significantly suppressed apoptosis, DNA damage, and decreased cell viability induced by PD treatment. Collectively, our findings indicated that PD blocked the growth of bladder urothelial carcinoma cells by inducing ROS-mediated inactivation of the PI3K/Akt/mTOR signaling.


Assuntos
Carcinoma de Células de Transição , Saponinas , Triterpenos , Neoplasias da Bexiga Urinária , Apoptose , Humanos , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinase/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Saponinas/farmacologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Triterpenos/farmacologia , Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
13.
Front Pharmacol ; 13: 927898, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784747

RESUMO

Fisetin is a kind of bioactive flavonol, widely present in various fruits such as strawberries and apples, and is known to act as a potent free radical scavenger. However, the mechanism of action related to the antioxidant activity of this compound in human retinal pigment epithelial (RPE) cells is not precisely known. In this study, we aimed to investigate whether fisetin could attenuate oxidative stress-induced cytotoxicity on human RPE ARPE-19 cells. To mimic oxidative stress, ARPE-19 cells were treated with hydrogen peroxide (H2O2), and fisetin significantly inhibited H2O2-induced loss of cell viability and increase of intracellular reactive oxygen species (ROS) production. Fisetin also markedly attenuated DNA damage and apoptosis in H2O2-treated ARPE-19 cells. Moreover, mitochondrial dysfunction in H2O2-treated cells was alleviated in the presence of fisetin as indicated by preservation of mitochondrial membrane potential, increase of Bcl-2/Bax expression ratio, and suppression of cytochrome c release into the cytoplasm. In addition, fisetin enhanced phosphorylation and nuclear translocation of nuclear factor erythroid 2 related factor 2 (Nrf2), which was associated with increased expression and activity of heme oxygenase-1 (HO-1). However, the HO-1 inhibitor, zinc protoporphyrin, significantly reversed the protective effect of fisetin against H2O2-mediated ARPE-19 cell injury. Therefore, our results suggest that Nrf2-mediated activation of antioxidant enzyme HO-1 may play an important role in the ROS scavenging activity of fisetin in RPE cells, contributing to the amelioration of oxidative stress-induced ocular disorders.

14.
EBioMedicine ; 81: 104092, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35665684

RESUMO

BACKGROUND: Despite the availability of several treatments for non-muscle-invasive bladder cancer (NMIBC), many patients are still not responsive to treatments, and the disease progresses. A new prognostic classifier can differentiate between treatment response and progression, and it could be used as a very important tool in patient decision-making regarding treatment options. In this study, we focused on the activation of Yes-associated protein 1 (YAP1), which is known to play a pivotal role in tumour progression and serves as a factor contributing to the mechanism of resistance to various relevant therapeutic agents. We further evaluated its potential as a novel prognostic agent. METHODS: We identified YAP1-associated gene signatures based on UC3-siYAP1 cells (n=8) and NMIBC cohort (n=460). Cross-validation was performed using 5 independent bladder cancer patient cohorts (n=1006). We also experimentally validated the changes of gene expression levels representing each subgroup. FINDINGS: The 976-gene signature based on YAP1-activation redefined three subgroups and had the benefits of Bacillus Calmette-Guérin (BCG) treatment in patients with NMIBC (hazard ratio 3.32, 95% CI 1.29-8.56, p = 0.01). The integrated analysis revealed that YAP1 activation was associated with the characterization of patients with high-risk NMIBC and the response to immunotherapy. INTERPRETATION: This study suggests that YAP1 activation has an important prognostic effect on bladder cancer progression and might be useful in the selection of immunotherapy. FUNDING: A funding list that contributed to this research can be found in the Acknowledgements section.


Assuntos
Neoplasias da Bexiga Urinária , Adjuvantes Imunológicos , Vacina BCG , Humanos , Fatores Imunológicos/uso terapêutico , Imunoterapia , Invasividade Neoplásica , Recidiva Local de Neoplasia/tratamento farmacológico , Prognóstico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/terapia , Proteínas de Sinalização YAP
15.
Front Immunol ; 13: 864739, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464435

RESUMO

The tumor microenvironment (TME) plays a critical role in tumorigenesis and is comprised of different components, including tumor cells, stromal cells, and immune cells. Among them, the relationship between each mediator involved in the construction of the TME can be understood by focusing on the secreting or expressing factors from each cells. Therefore, understanding the various interactions between each cellular component of the TME is necessary for precise therapeutic approaches. In carcinoma, stromal cells are well known to influence extracellular matrix (ECM) formation and tumor progression through multiple mediators. Immune cells respond to tumor cells by causing cytotoxicity or inflammatory responses. However, they are involved in tumor escape through immunoregulatory mechanisms. In general, anti-cancer therapy has mainly been focused on cancer cells themselves or the interactions between cancer cells and specific cell components. However, cancer cells directly or indirectly influence other TME partners, and members such as stromal cells and immune cells also participate in TME organization through their mutual communication. In this review, we summarized the relationship between stromal cells and immune cells in the TME and discussed the positive and negative relationships from the point of view of tumor development for use in research applications and therapeutic strategies.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Fibroblastos Associados a Câncer/patologia , Humanos , Células Estromais/patologia , Evasão Tumoral , Microambiente Tumoral
16.
Oncol Rep ; 47(5)2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35293594

RESUMO

Subsequently to the publication of the above article, an interested reader drew to the authors' attention that certain of the data panels featured in Figs. 1B, 4A, 6A and 8A, showing DAPI or NAC staining of the cells, appeared to contain overlapping data. The authors have consulted their original data, and realize that errors were made during the compilation of these figures; consequently, they have repeated the affected experiments. The revised versions of Figs. 1, 4, 6 and 8, featuring replacement data for Figs. 1B, 4A, 6A and 8A, are shown on the subsequent pages. The authors regret the errors that were made during the preparation of the published figures, and confirm that these errors did not affect the conclusions reported in the study. The authors are grateful to the Editor of Oncology Reports for allowing them the opportunity to publish a Corrigendum, and all the authors agree to this Corrigendum. Furthermore, they apologize to the readership for any inconvenience caused. [the original article was published in Oncology Reports 36: 205­214, 2016; DOI: 10.3892/or.2016.4812].

17.
BMB Rep ; 55(5): 226-231, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35168699

RESUMO

It is well-known that some species of lizard have an exceptional ability known as caudal autotomy (voluntary self-amputation of the tail) as an anti-predation mechanism. After amputation occurs, they can regenerate their new tails in a few days. The new tail section is generally shorter than the original one and is composed of cartilage rather than vertebrae bone. In addition, the skin of the regenerated tail distinctly differs from its original appearance. We performed a proteomics analysis for extracts derived from regenerating lizard tail tissues after amputation and found that endoplasmin (ENPL) was the main factor among proteins up-regulated in expression during regeneration. Thus, we performed further experiments to determine whether ENPL could induce chondrogenesis of tonsil-derived mesenchymal stem cells (T-MSCs). In this study, we found that chondrogenic differentiation was associated with an increase of ENPL expression by ER stress. We also found that ENPL was involved in chondrogenic differentiation of T-MSCs by suppressing extracellular signal-regulated kinase (ERK) phosphorylation. [BMB Reports 2022; 55(5): 226-231].


Assuntos
Lagartos , Células-Tronco Mesenquimais , Animais , Diferenciação Celular , Células Cultivadas , Condrócitos/metabolismo , Condrogênese , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Lagartos/fisiologia , Glicoproteínas de Membrana , Tonsila Palatina/metabolismo
18.
Pharmaceutics ; 13(10)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34683920

RESUMO

Isoalantolactone (IALT) is one of the isomeric sesquiterpene lactones isolated from the roots of Inula helenium L. IALT is known to possess various biological and pharmacological activities, but its anti-cancer mechanisms are not well understood. The aim of the present study was to investigate the anti-proliferative effects of IALT in human hepatocellular carcinoma (HCC) cells and to evaluate the potential anti-cancer mechanisms. Our results demonstrated that IALT treatment concentration-dependently suppressed the cell survival of HCC Hep3B cells, which was associated with the induction of apoptosis. IALT increased the expression of death-receptor-related proteins, activated caspases, and induced Bid truncation, subsequently leading to cleavage of poly (ADP-ribose) polymerase. In addition, IALT contributed to the cytosolic release of cytochrome c by destroying mitochondrial integrity, following an increase in the Bax/Bcl-2 expression ratio. However, IALT-mediated growth inhibition and apoptosis were significantly attenuated in the presence of a pan-caspase inhibitor, suggesting that IALT induced caspase-dependent apoptosis in Hep3B cells. Moreover, IALT activated the mitogen-activated protein kinases signaling pathway, and the anti-cancer effect of IALT was significantly diminished in the presence of a potent c-Jun N-terminal kinase (JNK) inhibitor. IALT also improved the generation of intracellular reactive oxygen species (ROS), whereas the ROS inhibitor significantly abrogated IALT-induced growth reduction, apoptosis, and JNK activation. Furthermore, ROS-dependent apoptosis was revealed as a mechanism involved in the anti-cancer activity of IALT in a 3D multicellular tumor spheroid model of Hep3B cells. Taken together, our findings indicate that IALT exhibited anti-cancer activity in HCC Hep3B cells by inducing ROS-dependent activation of the JNK signaling pathway.

19.
Pharmaceutics ; 13(9)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34575516

RESUMO

Air pollutants, especially ambient fine particulate matter2.5, may contribute to various ocular surface disorders, including dry eye disease, keratitis and conjunctivitis. A natural polyamine spermidine has a protective effect on the retina and optic nerve; however, no study has been conducted on the application of spermidine in particulate matter2.5-induced dry eye disease. In the present study, we investigated the effect of spermidine eye drops in topically exposed particulate matter2.5-induced dry eye models of Sprague-Dawley rats, by hematological, biochemical and histological evaluation. Spermidine eye drops attenuated the particulate matter2.5 exposure-induced reduction of tear secretion and corneal epithelial damage. Furthermore, spermidine protected against conjunctival goblet cell loss and retinal ganglion cell loss induced by particulate matter2.5. Additionally, spermidine markedly prevented particulate matter2.5-induced infiltration of cluster of differentiation3+ and cluster of differentiation4+ T lymphocytes and F4/80+ macrophages on lacrimal gland. Moreover, over expression of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-6 and interleukin-17 in the lacrimal gland and cornea. Meanwhile, the levels of serum total cholesterol and low-density lipoprotein cholesterol were markedly increased by topical exposure to particulate matter2.5, but this change in the lipid profile was decreased by spermidine. Taken together, spermidine may have protective effects against particulate matter2.5-induced dry eye symptoms via stabilization of the tear film and suppression of inflammation and may in part contribute to improving retinal function and lipid metabolism disorder.

20.
Genes Genomics ; 43(12): 1381-1388, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34436741

RESUMO

BACKGROUND: Previously, we identified eight novel minisatellites in the MUC2, of which allelic variants in MUC2-MS6 were examined to influence susceptibility to gastric cancer. However, studies on the susceptibility to gastrointestinal cancer of other minisatellites in the MUC2 region still remain unprogressive. OBJECTIVE: In this study, we investigated whether polymorphic variations in the MUC2-MS8 region are related to susceptibility to gastrointestinal cancer. METHODS: We assessed the association between MUC2-MS8 and gastrointestinal cancers by a case-control study with 1229 controls, 486 gastric cancer cases, 220 colon cancer cases and 278 rectal cancer cases. To investigate whether intronic minisatellites affect gene expression, various minisatellites were inserted into the luciferase-reporter vector and their expression levels were examined. We also examined the length of MUC2-MS8 alleles in blood and cancer tissue matching samples of 107 gastric cancer patients, 125 colon cancer patients, and 85 rectal cancer patients, and investigated whether the repeat sequence affects genome instability. RESULTS: A statistically significant association was identified between rare MUC2-MS8 alleles and the occurrence of rectal cancer: odds ratio (OR), 6.66; 95% confidence interval (CI), 1.11-39.96; and P = 0.0165. In the younger group (age, < 55), rare alleles were significant associated with an increased risk of rectal cancer (odds ratio, 24.93 and P = 0.0001). Suppression of expression was found in the reporter vector inserted with minisatellites, and loss of heterozygosity (LOH) of the MUC2-MS8 region was confirmed in cancer tissues of gastrointestinal cancer patients (0.8-5.9%). CONCLUSION: Our results suggest that the rare alleles of MUC2-MS8 could be used to identify the risk of rectal cancer and that this repeat region is related to genomic instability.


Assuntos
Alelos , Carcinoma/genética , Mucina-2/genética , Neoplasias Retais/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Repetições de Microssatélites , Pessoa de Meia-Idade , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...